149 research outputs found

    Current Approaches for Image Fusion of Histological Data with Computed Tomography and Magnetic Resonance Imaging

    Get PDF
    Classical analysis of biological samples requires the destruction of the tissue’s integrity by cutting or grinding it down to thin slices for (Immuno)-histochemical staining and microscopic analysis. Despite high specificity, encoded in the stained 2D section of the whole tissue, the structural information, especially 3D information, is limited. Computed tomography (CT) or magnetic resonance imaging (MRI) scans performed prior to sectioning in combination with image registration algorithms provide an opportunity to regain access to morphological characteristics as well as to relate histological findings to the 3D structure of the local tissue environment. This review provides a summary of prevalent literature addressing the problem of multimodal coregistration of hard- and soft-tissue in microscopy and tomography. Grouped according to the complexity of the dimensions, including image-to-volume (2D ⟶ 3D), image-to-image (2D ⟶ 2D), and volume-to-volume (3D ⟶ 3D), selected currently applied approaches are investigated by comparing the method accuracy with respect to the limiting resolution of the tomography. Correlation of multimodal imaging could position itself as a useful tool allowing for precise histological diagnostic and allow the a priori planning of tissue extraction like biopsies

    Heavy ion action on single cells: Cellular inactivation capability of single accelerated heavy ions

    Get PDF
    Heavy ions (HZE-particles) constitute an important part of radiation in space. Although their number is small the high amount of energy transferred by individual particles may cause severe biological effects. Their investigation requires special techniques which were tested by experiments performed at the UNILAC at the GSI (Darmstadt). Diploid yeast was used which is a suitable eucaryotic test system because of its resistance to extreme conditions like dryness and vacuum. Cells were placed on nuclear track detector foils and exposed to ions of different atomic number and energy. To assess the action of one single ion on an individual cell, track parameters and the respective colony forming abilities (CFA) were determined with the help of computer aided image analysis. There is mounting evidence that not only the amount of energy deposited along the particle path, commonly given by the LET, is of importance but also the spatial problem of energy deposition at a submicroscopical scale. It is virtually impossible to investigate track structure effects in detail with whole cell populations and (globally applied) high particle fluences. It is, therefore, necessary to detect the action of simple ions in individual cells. The results show that the biological action depends on atomic number and specific energy of the impinging ions, which can be compared with model calculations of recent track structure models

    Monitoring Antigen Processing for MHC Presentation via Macroautophagy

    Full text link
    Macroautophagy has recently emerged as an important catabolic process involved not only in innate immunity but also in adaptive immunity. Initially described to deliver intracellular antigens to MHC class II loading compartments, its molecular machinery has now also been described to impact the delivery of extracellular antigens to MHC class II loading compartments through the noncanonical use of the macroautophagy machinery during LC3-associated phagocytosis (LAP). Therefore, in pathological situations (viral or bacterial infections, tumorigenesis) the pathway might be involved in shaping CD4+^{+} T cell responses.In this chapter we describe three basic experiments for the monitoring and manipulation of macroautophagic antigen processing toward MHC class II presentation through the canonical pathway. Firstly, we will discuss how to monitor autophagic flux and autophagosome fusion with MHC class II loading compartments. Secondly, we will show how to target proteins to autophagosomes in order to monitor macroautophagy dependent antigen processing via their enhanced presentation on MHC class II molecules to CD4+^{+} T cells. And finally, we will describe how macroautophagy can be silenced in antigen presenting cells, like human monocyte-derived dendritic cells (DCs)

    Liver Enzyme Abnormalities and Associated Risk Factors in HIV Patients on Efavirenz-Based HAART with or without Tuberculosis Co-Infection in Tanzania.

    Get PDF
    To investigate the timing, incidence, clinical presentation, pharmacokinetics and pharmacogenetic predictors for antiretroviral and anti-tuberculosis drug induced liver injury (DILI) in HIV patients with or without TB co-infection. A total of 473 treatment naïve HIV patients (253 HIV only and 220 with HIV-TB co-infection) were enrolled prospectively. Plasma efavirenz concentration and CYP2B6*6, CYP3A5*3, *6 and *7, ABCB1 3435C/T and SLCO1B1 genotypes were determined. Demographic, clinical and laboratory data were collected at baseline and up to 48 weeks of antiretroviral therapy. DILI case definition was according to Council for International Organizations of Medical Sciences (CIOMS). Incidence of DILI and identification of predictors was evaluated using Cox Proportional Hazards Model. The overall incidence of DILI was 7.8% (8.3 per 1000 person-week), being non-significantly higher among patients receiving concomitant anti-TB and HAART (10.0%, 10.7 per 1000 person-week) than those receiving HAART alone (5.9%, 6.3 per 1000 person-week). Frequency of CYP2B6*6 allele (p = 0.03) and CYP2B6*6/*6 genotype (p = 0.06) was significantly higher in patients with DILI than those without. Multivariate cox regression model indicated that CYP2B6*6/*6 genotype and anti-HCV IgG antibody positive as significant predictors of DILI. Median time to DILI was 2 weeks after HAART initiation and no DILI onset was observed after 12 weeks. No severe DILI was seen and the gain in CD4 was similar in patients with or without DILI. Antiretroviral and anti-tuberculosis DILI does occur in our setting, presenting early following HAART initiation. DILI seen is mild, transient and may not require treatment interruption. There is good tolerance to HAART and anti-TB with similar immunological outcomes. Genetic make-up mainly CYP2B6 genotype influences the development of efavirenz based HAART liver injury in Tanzanians

    6-thioguanine treatment in inflammatory bowel disease: A critical appraisal by a European 6-TG working party

    Get PDF
    Recently, the suggestion to use 6-thioguanine (6-TG) as an alternative thiopurine in patients with inflammatory bowel disease (IBD) has been discarded due to reports about possible (hepato) toxicity. During meetings arranged in Vienna and Prague in 2004, European experts applying 6-TG further on in IBD patients presented data on safety and efficacy of 6-TG. After thorough evaluation of its risk-benefit ratio, the group consented that 6-TG may still be considered as a rescue drug in stringently defined indications in IBD, albeit restricted to a clinical research setting. As a potential indication for administering 6-TG, we delineated the requirement for maintenance therapy as well as intolerance and/or resistance to aminosalicylates, azathioprine, 6-mercaptopurine, methotrexate and infliximab. Furthermore, indications are preferred in which surgery is thought to be inappropriate. The standard 6-TG dosage should not exceed 25 mg daily. Routine laboratory controls are mandatory in short intervals. Liver biopsies should be performed after 6-12 months, three years and then three-yearly accompanied by gastroduodenoscopy, to monitor for potential hepatotoxicity, including nodular regenerative hyperplasia (NRH) and veno-occlusive disease (VOD). Treatment with 6-TG must be discontinued in case of overt or histologically proven hepatotoxicity. Copyright (c) 2006 S. Karger AG, Basel

    The incidence of liver injury in Uyghur patients treated for TB in Xinjiang Uyghur autonomous region, China, and its association with hepatic enzyme polymorphisms nat2, cyp2e1, gstm1 and gstt1.

    Get PDF
    BACKGROUND AND OBJECTIVE: Of three first-line anti-tuberculosis (anti-TB) drugs, isoniazid is most commonly associated with hepatotoxicity. Differences in INH-induced toxicity have been attributed to genetic variability at several loci, NAT2, CYP2E1, GSTM1and GSTT1, that code for drug-metabolizing enzymes. This study evaluated whether the polymorphisms in these enzymes were associated with an increased risk of anti-TB drug-induced hepatitis in patients and could potentially be used to identify patients at risk of liver injury. METHODS AND DESIGN: In a cross-sectional study, 2244 tuberculosis patients were assessed two months after the start of treatment. Anti-TB drug-induced liver injury (ATLI) was defined as an ALT, AST or bilirubin value more than twice the upper limit of normal. NAT2, CYP2E1, GSTM1 and GSTT1 genotypes were determined using the PCR/ligase detection reaction assays. RESULTS: 2244 patients were evaluated, there were 89 cases of ATLI, a prevalence of 4% 9 patients (0.4%) had ALT levels more than 5 times the upper limit of normal. The prevalence of ATLI was greater among men than women, and there was a weak association with NAT2*5 genotypes, with ATLI more common among patients with the NAT2*5*CT genotype. The sensitivity of the CT genotype for identifying patients with ATLI was 42% and the positive predictive value 5.9%. CT ATLI was more common among slow acetylators (prevalence ratio 2.0 (95% CI 0.95,4.20) )compared to rapid acetylators. There was no evidence that ATLI was associated with CYP2E1 RsaIc1/c1genotype, CYP2E1 RsaIc1/c2 or c2/c2 genotypes, or GSTM1/GSTT1 null genotypes. CONCLUSIONS: In Xinjiang Uyghur TB patients, liver injury was associated with the genetic variant NAT2*5, however the genetic markers studied are unlikely to be useful for screening patients due to the low sensitivity and low positive predictive values for identifying persons at risk of liver injury

    Aplastic anemia associated with interferon alpha 2a in a patient with chronic hepatitis C virus infection: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Hepatitis-associated aplastic anemia is a common syndrome in patients with bone marrow failure. However, hepatitis-associated aplastic anemia is an immune-mediated disease that does not appear to be caused by any of the known hepatitis viruses including hepatitis C virus. In addition, to the best of our knowledge there are no reported cases of patients with chronic hepatitis C virus infection developing aplastic anemia associated with pegylated interferon alpha 2a treatment.</p> <p>Case presentation</p> <p>We report the case of a 46-year-old Greek man who developed severe aplastic anemia during treatment with pegylated interferon alpha 2a for chronic hepatitis C virus infection. He presented with generalized purpura and bruising, as well as pallor of the skin and mucous membranes. His blood tests showed pancytopenia. He underwent allogeneic bone marrow transplantation after completing two courses of immunosuppressive therapy with antithymocyte globulin and cyclosporin A.</p> <p>Conclusions</p> <p>The combination of a specific environmental precipitant represented by the hepatitis C virus infection, an altered metabolic detoxification pathway due to treatment with pegylated interferon alpha 2a and a facilitating genetic background such as polymorphism in metabolic detoxification pathways and specific human leukocyte antigen genes possibly conspired synergistically in the development of aplastic anemia in this patient. Our case clearly shows that the causative role of pegylated interferon alpha 2a in the development of aplastic anemia must not be ignored.</p

    Bacterial Delivery of Nuclear Proteins into Pluripotent and Differentiated Cells

    Get PDF
    Numerous Gram negative pathogens possess a type III secretion system (T3SS) which allows them to inject virulent proteins directly into the eukaryotic cell cytoplasm. Injection of these proteins is dependent on a variable secretion signal sequence. In this study, we utilized the N-terminal secretion signal sequence of Pseudomonas aeruginosa exotoxin ExoS to translocate Cre recombinase containing a nuclear localization sequence (Cre-NLS). Transient exposure of human sarcoma cell line, containing Cre-dependent lacZ reporter, resulted in efficient recombination in the host chromosome, indicating that the bacterially delivered protein was not only efficiently localized to the nucleus but also retained its biological function. Using this system, we also illustrate the ability of P. aeruginosa to infect mouse embryonic stem cells (mESC) and the susceptibility of these cells to bacterially delivered Cre-NLS. A single two-hour infection caused as high as 30% of the mESC reporter cells to undergo loxP mediated chromosomal DNA recombination. A simple antibiotic treatment completely eliminated the bacterial cells following the delivery, while the use of an engineered mutant strain greatly reduced cytotoxicity. Utility of the system was demonstrated by delivery of the Cre-NLS to induced pluripotent stem cells to excise the floxed oncogenic nuclear reprogramming cassette. These results validate the use of T3SS for the delivery of transcription factors for the purpose of cellular reprogramming

    Potential health risks of complementary alternative medicines in cancer patients

    Get PDF
    Many cancer patients use complementary alternative medicines (CAMs) but may not be aware of the potential risks. There are no studies quantifying such risks, but there is some evidence of patient risk from case reports in the literature. A cross-sectional survey of patients attending the outpatient department at a specialist cancer centre was carried out to establish a pattern of herbal remedy or supplement use and to identify potential adverse side effects or drug interactions with conventional medicines. If potential risks were identified, a health warning was issued by a pharmacist. A total of 318 patients participated in the study. Of these, 164 (51.6%) took CAMs, and 133 different combinations were recorded. Of these, 10.4% only took herbal remedies, 42.1% only supplements and 47.6% a combination of both. In all, 18 (11.0%) reported supplements in higher than recommended doses. Health warnings were issued to 20 (12.2%) patients. Most warnings concerned echinacea in patients with lymphoma. Further warnings were issued for cod liver/fish oil, evening primrose oil, gingko, garlic, ginseng, kava kava and beta-carotene. In conclusion, medical practitioners need to be able to identify the potential risks of CAMs. Equally, patients should be encouraged to disclose their use. Also, more research is needed to quantify the actual health risks

    Translating Clinical Findings into Knowledge in Drug Safety Evaluation - Drug Induced Liver Injury Prediction System (DILIps)

    Get PDF
    Drug-induced liver injury (DILI) is a significant concern in drug development due to the poor concordance between preclinical and clinical findings of liver toxicity. We hypothesized that the DILI types (hepatotoxic side effects) seen in the clinic can be translated into the development of predictive in silico models for use in the drug discovery phase. We identified 13 hepatotoxic side effects with high accuracy for classifying marketed drugs for their DILI potential. We then developed in silico predictive models for each of these 13 side effects, which were further combined to construct a DILI prediction system (DILIps). The DILIps yielded 60–70% prediction accuracy for three independent validation sets. To enhance the confidence for identification of drugs that cause severe DILI in humans, the “Rule of Three” was developed in DILIps by using a consensus strategy based on 13 models. This gave high positive predictive value (91%) when applied to an external dataset containing 206 drugs from three independent literature datasets. Using the DILIps, we screened all the drugs in DrugBank and investigated their DILI potential in terms of protein targets and therapeutic categories through network modeling. We demonstrated that two therapeutic categories, anti-infectives for systemic use and musculoskeletal system drugs, were enriched for DILI, which is consistent with current knowledge. We also identified protein targets and pathways that are related to drugs that cause DILI by using pathway analysis and co-occurrence text mining. While marketed drugs were the focus of this study, the DILIps has a potential as an evaluation tool to screen and prioritize new drug candidates or chemicals, such as environmental chemicals, to avoid those that might cause liver toxicity. We expect that the methodology can be also applied to other drug safety endpoints, such as renal or cardiovascular toxicity
    corecore